SYNTHESIS OF RBF-NETWORK FOR PREDICTION OF SECONDARY PROTEIN STRUCTURE

Lytvynenko V.
Abstract: 
In this paper we propose the methodology of team radial-basis networks synthesis for solving the problem of protein secondary structure prediction using clonal selection algorithm. To solve such problem the method of "one against all" have been used. The carried out computational experiments on test sample have shown that the prediction accuracy allows to achieve up to 72%, indicating a high accuracy of the proposed method.
References: 

1. Nguyen M.N., Rajapakse J.C. Multi-Class Support Vector Machines for Protein Secondary Structure Prediction, Genome Informatics 14, 218-227, 2003. 2. Clote, P. and Backofen, R., Computational Molecular Biology, Wiley and Sons, Ltd., Chichester, 2000. 3.Mount, D.W., Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, 2001. 4. Garnier, J., Osguthorpe, D.J., and Robson, B., Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, Journal of Molecular Biology, 120:97-120, 1978. 5. Garnier, J., Gibrat, J.F., and Robson, B., GOR method for predicting protein secondary structure from amino acid sequence, Methods Enzymol, 266:541-553, 1996. 6. Gibrat, J.F., Garnier, J., and Robson, B., Further developments of protein secondary structureprediction using information theory, Journal of Molecular Biology, 198:425-443, 1987. 7. Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, 292:195 202, 1999. 8. Rost, B. and Sander, C., Prediction of protein secondary structure at better than 70% accuracy, Journal of Molecular Biology, 232:584-599, 1993. 9. Salamov, A.A. and Solovyev, V.V., Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments, Journal of Molecular Biology, 247:11-15, 1995.10. Salamov, A.A. and Solovyev, V.V., Protein secondary structure prediction using local alignments, Journal of Molecular Biology, 268:31-36, 1997. 11. Hua, S. and Sun, Z., A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach, Journal of Molecular Biology, 308:397-407, 2001. 12. Lipo Wang and Xiuju Fu Data Mining With Computational Intelligence Berlin: Springer-Verlag, 2005, pp. 276, (ISBN 3-540-24 522-7). 13. Sudipta Saha Protein Secondary Structure Prediction by Fuzzy Min-Max Neural Network with Compensatory Neuron / Thesis submitted in partial fulfillment of the requirements for the degree of Master of Technology In Computer Science & Engineering/ Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur-721302, West Bengal, India May, 2008, 126 p. 14. Skolnick, J., A. Kolinski, and A. R. Ortiz. 1997. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265:217–241. 15. Taylor, W. R. & Thornton. J. M. (1984). Recognition of super-secondary structure in proteins. J . ..Yol. Bioi. 173. 487-514. 16. O. Weiss and H. Herzel. Measuring Correlations in Protein Sequences. Z. Phys. Chem., 204, 183-197 (1998). 17. Jagla, B. and Schuchhardt, J. 2000. Adaptive encoding neural networks for the recognition of human signal peptide cleavage sites. Bioinformatics 16: 245–250. 18. Rost, B. and Sander, C., Prediction of protein secondary structure at better than 70% accuracy, Journal of Molecular Biology, 232:584-599, 1993. 19. Литвиненко В.І., Фефелов А.О., Дідик О.О. Методологія синтезу колективу радіально–базисних мереж для розв’язування задач класифікації за допомогою алгоритму клонального відбору // Наукові праці ЧДУ ім. Петра Могили. Науково–методичний журнал. Серія “Комп’ютерні науки”, – ЧДУ ім. Петра Могили. ‒ 2009. ‒ Вип. 93.‒ Том.106. ‒ С.111–123. 20. Литвиненко В.И. Искусственные иммунные системы как средство индуктивного построения оптимальных моделей сложных объектов// Проблемы управления и інформатики. ‒ 2008. ‒ №3. ‒ С.30–42. 21. Chris H.Q.Ding and Inna Dubchak Multi-class protein fold recognition using support vector machines and neural networks /Bioinformatics, Vol.17 no. 4, 2004 p. 349-358. 22. Ryan Rifkin and Aldebaro Klautau. Parallel networks that learn to pronounce english text. Journal of Machine Learning Research, pages 101–141, 2004. 23. Mohamed Aly. Survey on Multi-Class Classification Methods. Technical Report, Caltech, USA, 2005. 24.N. Qian T. J. Sejnowski Predicting the Secondary Structure of Globular Proteins Using Neural Network Models/ J. Mol. Biol. (1988) 202, p. 865-884. 25.Matthews, B.W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442–451. 26. Fabio Gonzalez. A Study of Artificial Immune Systems Applied to Anomaly Detection [Ph.D. thesis]. USA The University of Memphis; 2003. -184 p. 27. Тютерев В.В. Метод эволюционного накопления признаков для автоматического построения нейронных сетей // Вычислительные методы и программирование.- 2001.- Т.2.- C.88-108.