IDENTIFYING THE ELASTIC MODULI OF COMPOSITE PLATES BY USING HIGH-ORDER THEORIES

Bohdan Diveyev
Анотація: 
The study aims to predict elastic and damping properties of composite laminated plates from the measured mechanical characteristics. The elastic constants and damping properties of a laminated element are determined by using experimental data and the results of a multi level theoretical approach. Solution examples for particular problems are given. On the basis of static three-point bending tests, measured eigenfrequencies, and refined calculation schemes, the elastic properties of layered composite beams were identified. For determining Young’s and shear moduli, the method of genetic minimization of error function was used. It is shown that, by employing combined criteria, the transverse elastic moduli can be determined uniquely. It is shown that, by employing combined criteria, the transverse elastic moduli can be determined. The elastic modules were also determined from measured vibration eigen-frequencies of the beams. New combined criteria of identification – schemes averaged over the calculation results for a homogeneous beam and for a sandwich with a core identical to the homogeneous beam and rigid outer layers are considered. The error function is chosen as the sum of error functions for the homogeneous beam, and for the sandwich. In the present study, combined identification schemes making it possible to unequivocally determine the transverse modules and Poisson ratio are suggested.
Список джерел: 

[1] Ross D. Damping of plate flexural vibrations by means of viscoelastic laminate / D. Ross, E. E. Ungar, E. M. Kerwin // ASME, Structural Damping. – 1959. – P. 49–88.
[2] Di Taranto R. A. Theory of vibratory bending for elastic and viscoelastic layered finite length beams / R. A. Di Taranto // Transactions of the ASME, Journal of Applied Mechanics. – 1965. – Vol. 32. – P. 881–886.
[3] Di Taranto R. A. Composite Damping of Vibrating Sandwich Beams / R. A. Di Taranto, W. Blasingame // Journal of Engineering for Industry. – 1967. – Vol. 89. – P. 633–638.
[4] Mead D. J. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions / D. J. Mead, S. Markus // Journal of Sound and Vibration. – 1969. – Vol. 10, No. 2. – P. 163–175.
[5] Mead D. J. Loss Factors and Resonant Frequencies of Encastre Damped Sandwich Beams / D. J. Mead, S. Markus // Journal of Sound and Vibration. – 1970. – Vol. 12, No. 1. – P. 99–112.
[6] Srinivas S. Flexural vibration of rectangular plates / S. Srinivas, C. V. Joga Rao, A. K. Rao // Journal of Applied Mechanics. – 1970. – Vol. 23. – P. 430–436.
[7] Lo K. H. A High-Order Theory of Plate Deformation. Part 2: Laminated Plates / K. H. Lo, R. M. Christensen, E. M. Wu // Journal of Applied Mechanics. – Vol. 44, Trans. ASME, Series E. – P. 669–676.
[8] Karczmaryk S. An Analytical model of flexural vibration and the bending of plane viscoelastic composite structures. – Politechnica Warszawska, Prace Naukowe, Mechanika, z. 172, Warshava, 1999. – 159 p.
[9] Springolo Mario. Design and analysis of a composite beam for infrastructure applications – Part I: Preliminary investigation in bending / Springolo Mario, Gerard Van Erp, Khennane Amar // Int. J. of Materials and Product Technology. – 2006. – Vol. 25, No. 4. – P. 297–312.
[10] Shao Hui Zhang. Numerical parametric investigation of loss factor of laminated composites with interleaved viscoelastic layers / Shao Hui Zhang, Hua Ling Chen, Xiao Peng Wang // Int. J. of Vehicle Noise and
Vibration. – 2006. – Vol. 2, No. 1. – P. 62–74.
[11] Kyriazoglou C. Finite element prediction of damping of composite GFRP and CFRP laminates – a hybrid formulation – vibration damping experiments and Raleigh damping / C. Kyriazoglou, F. J. Guild // Composites Science and Technology. – 2006. –Vol. 66. – P. 487–498.
[12] Pagano N. J. Exact solutions for composite laminates in cylindrical bending / N. J. Pagano // Journal of Composite Materials. – 1969. – Vol. 3. – P. 398–411.
[13] Rao M. K. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory / M. K. Rao, Y. M. Desai // Composite Structures. – 2004. – Vol. 63. – P. 361–373.
[14] Григоренко Я. М. Теория оболочек переменной жесткости / Я. М. Григоренко, А. Т. Василенко. – К. : Наукова думка, 1981. – 544 с. – (Методы расчета оболочек в 5-ти т.: Т.4 ).
[15] Hu Heng, Belouettar Salim, Potier-Ferry Michel, and Daya El Mustafa, “Review and assessment of various theories for modeling sandwich composites”, Compos. Struct., 84, 282-292 (2008).
[16] E. Carrera, “Historical review of zig-zag theories for multilayered plates and shells,” Appl. Mech. Rev., 56, 287-308 (2003).
[17] Sheremetjev M. P. To refined plate theory construction / M. P. Sheremetjev, B. L. Pelekh // Engineering Journal. – 1964. – Vol. 4. – P. 504–510 (in Russian).
[18] Пелех Б. Л. Некоторые динамические задачи для вязкоупругих анизотропных оболочек и пластин. 1. Обобщенные динамические уравнения теории слоистых оболочек с учетом граничных условий на поверхностях / Б. Л. Пелех, Б. М. Дивеев // Механика композитных материалов. – 1980. – №2. – С. 277–280.
[19] Пелех Б. Л. Некоторые динамические задачи для вязкоупругих анизотропных оболочек и пластин. 2. Импеданс вязкоупругих анизотропных оболочек и пластин / Б. Л. Пелех, Б. М. Дивеев // Механика композитных материалов. – 1980. – № 3. – С. 546–548.
[20] Дівеєв Б. М. Один спосіб розрахунку шаруватих структур / Б. М. Дивеев. – Львів 1991. – 53 с. – (Препр.-АН УРСР. Ин-т прикл. проблем мех. і матем., №16–90.
[21] Diveyev B. M. Refined Numerical Schemes for a Stressed-Strained State of Structural Joints of Layered Elements / B. M. Diveyev, M. M. Nykolyshyn // Journal of Mathematical Sciences. – 2001. – Vol. 107, No. 1. – P. 130.
[22] Diveyev B. Dynamic properties identification for laminated plates / B. Diveyev, Z. Stotsko, V. Topilnyckyj // Journal of Achievements in Materials and Manufacturing Engineering. – 2007. – Vol. 20, ISSUES 1-2. – P. 237–230.
[23] Diveyev B. Dynamic Properties and Damping Prediction for Laminated Plates / B. Diveyev, M. J. Crocker // Proceeding of International Conference on Noise and Vibration Engineering (ISMA-2006), September 18-20, 2006 Katholieke Universiteit Leuven, Belgium. – 2006. – P. 1021–1028.
[24] Morozov E. V. and Vasiliev V. V. “Determination of the shear modulus of orthotropic materials from offaxis tension tests,” Compos. Struct., 62, 379-382 (2003).
[25] Greediac M., Toussaint E., Pierron F. “Special virtual fields for the direct determination of material parameters with the virtual fields method. 1. Principle and definition,” Int. J. Solids Struct., 39, No. 10, 2691–2705 (2002).
[26] A. L. Araujo, C. M. Mota Soares, M. J. Moreira de Freitas, P. Pedersen, and J. Herskovits, “Combined numerical-experimental model for the identification of mechanical properties of laminated structures,” Compos. Struct., 50, 363–372 (2000).
[27] R. Rikards, A. Chate, and A. Gailis, “Identification of elastic properties of laminates based on experimental design,” Solids Struct., 38, 5097-5115 (2001). 14. Yu. M. Tarnopol’skii and T. Ya. Kincis, Static Test Methods for Composites, Van Nostrand Reinhold, New York (1985).

Received: 
Tuesday, May 19, 2015
Accepted: 
Monday, September 21, 2015